6 research outputs found

    Improving Stability Prediction in Peripheral Milling of Al7075T6

    Get PDF
    Chatter is an old enemy to machinists but, even today, is far from being defeated. Current requirements around aerospace components call for stronger and thinner workpieces which are more prone to vibrations. This study presents the stability analysis for a single degree of freedom down-milling operation in a thin-walled workpiece. The stability charts were computed by means of the enhanced multistage homotopy perturbation (EMHP) method, which includes the helix angle but also, most importantly, the runout and cutting speed effects. Our experimental validation shows the importance of this kind of analysis through a comparison with a common analysis without them, especially when machining aluminum alloys. The proposed analysis demands more computation time, since it includes the calculation of cutting forces for each combination of axial depth of cut and spindle speed. This EMHP algorithm is compared with the semi-discretization, Chebyshev collocation, and full-discretization methods in terms of convergence and computation efficiency, and ultimately proves to be the most efficient method among the ones studied.The authors wish to acknowledge the financial support received from HAZITEK program, from the Department of Economic Development and Infrastructures of the Basque Government and from FEDER funds. Additional support was provided by the Tecnologico de Monterrey, through the Research Group in Nanomaterials and Devices Design

    Prediction Methods and Experimental Techniques for Chatter Avoidance in Turning Systems: A Review

    Get PDF
    The general trend towards lightweight components and stronger but difficult to machine materials leads to a higher probability of vibrations in machining systems. Amongst them, chatter vibrations are an old enemy for machinists with the most dramatic cases resulting in machine-tool failure, accelerated tool wear and tool breakage or part rejection due to unacceptable surface finish. To avoid vibrations, process designers tend to command conservative parameters limiting productivity. Among the different machining processes, turning is responsible of a great amount of the chip volume removed worldwide. This paper reports some of the main efforts from the scientific literature to predict stability and to avoid chatter with special emphasis on turning systems. There are different techniques and approaches to reduce and to avoid chatter effects. The objective of the paper is to summarize the current state of research in this hot topic, particularly (1) the mechanistic, analytical, and numerical methods for stability prediction in turning; (2) the available techniques for chatter detection and control; (3) the main active and passive techniques.Thanks are addressed to Basque country university excellence group IT1337-19. The authors wish to acknowledge also the financial support received from HAZITEK program, from the Department of Economic Development and Infrastructures of the Basque Government and from FEDER funds. This research was funded by Tecnologico de Monterrey through the Research Group of Nanotechnology for Devices Design, and by the Consejo Nacional de Ciencia y Tecnologia (CONACYT), Project Numbers 242269, 255837, 296176, and the National Lab in Additive Manufacturing, 3D Digitizing and Computed Tomography (MADiT) LN299129

    A model-based sustainable productivity concept for the best decision-making in rough milling operations

    Get PDF
    [EN]There is a need in manufacturing as in machining of being more productive. However, at the same time, workshops are also urged for lesser energy waste in cutting operations. Specially, rough milling of impellers and bladed integrated disks of aircraft engines need an efficient use of energy due to the long cycle times. Indeed, to avoid dramatic tool failures and idle times, cutting conditions and operations tend to be very conservative. This is a multivariable problem, where process engineers need to handle several aspects such as milling operation type, toolpath strategies, cutting conditions, or clamping systems. There is no criterion embracing productivity and power consumption. In this sense, this work proposes a methodology that meets productivity and sustainability by using a specific cutting energy or sustainable productivity gain (SPG) factor. Three rough milling operations-slot, plunge nad trochoidal milling-were modelled and verified. A bottom-up approach based on data from developed mechanistic force models evaluated and compared different alternatives for making a slot, which is a common operation in that king of workpieces. Experimental data confirmed that serrated end milling with the highest SPG value of 1 is the best milling operation in terms of power consumption and mass removal rate (MRR). In the case of plunge milling technique achieve an SPG < 0.51 while trochoidal milling produces a very low SPG value.The authors acknowledge the support from the Spanish Government (JANO, CIEN Project, 2019.0760) and Basque Government (ELKARTEK19/46, KK-2019/00004). This research was funded by Tecnologico de Monterrey through the Research Group of Nanotechnology for Devices Design, and by the Consejo Nacional de Ciencia y Tecnologia de Mexico (Conacyt), Project Number 296176, and National Lab in Additive Manufacturing, 3D Digitizing and Computed Tomography (MADiT) LN299129. The authors also acknowledge the support from Garikoitz Goikoetxea and fruitful discussions with Mr. Jon Mendez (Guhring (c)) and Endika Monge (Hoffmann Group (c))

    Semi-Active Magnetorheological Damper Device for Chatter Mitigation during Milling of Thin-Floor Components

    Get PDF
    The productivity during the machining of thin-floor components is limited due to unstable vibrations, which lead to poor surface quality and part rejection at the last stage of the manufacturing process. In this article, a semi-active magnetorheological damper device is designed in order to suppress chatter conditions during the milling operations of thin-floor components. To validate the performance of the magnetorheological (MR) damper device, a 1 degree of freedom experimental setup was designed to mimic the machining of thin-floor components and then, the stability boundaries were computed using the Enhance Multistage Homotopy Perturbation Method (EMHPM) together with a novel cutting force model in which the bull-nose end mill is discretized in disks. It was found that the predicted EMHPM stability lobes of the cantilever beam closely follow experimental data. The end of the paper shows that the usage of the MR damper device modifies the stability boundaries with a productivity increase by a factor of at least 3.This research was funded by Tecnológico de Monterrey through the Research Group of Nanotechnology for Devices Design, and by the Consejo Nacional de Ciencia y Tecnología de México (Conacyt), Project Numbers 242269, 255837, 296176, and National Lab in Additive Manufacturing, 3D Digitizing and Computed Tomography (MADiT) LN299129

    Síntesis de parámetros de diseño de un microespejo de escaneado compatible CMOS con actuación electrotémica y comportamiento resonante bimodal

    No full text
    Este trabajo presenta una metodología de síntesis de parámetros para la automatización del diseño de un microespejo de escaneado compatible CMOS con comportamiento resonante bimodal. El microespejo está suspendido por actuadores térmicos bimorfos en voladizo con accionamiento fuera del plano. La metodología propone la optimización de espesores y el escaneo en el segundo modo de resonancia como estrategias para superar el conflicto característico entre el desempeño estático y dinámico del dispositivo. El objetivo es obtener automáticamente los parámetros de diseño del dispositivo que, de manera concurrente, maximizan el ángulo de rotación, minimizan el consumo de energía y satisfacen tanto las limitaciones de fabricación de un proceso CMOS estándar como las especificaciones de alto nivel para la posición del eje de rotación en el segundo modo de resonancia, la frecuencia de escaneado y el voltaje máximo de actuación. La metodología utiliza un espacio de diseño de nivel intermedio, definido por la razón de resistencia térmica a resistencia eléctrica del dispositivo a temperatura ambiente, para acoplar las restricciones del esfuerzo térmico máximo con la densidad de corriente eléctrica máxima de los materiales CMOS. El procedimiento de evaluación de funciones objetivos se desarrolla sobre la base de un modelo de elementos concentrados de la resistencia térmica del dispositivo para explorar sistemáticamente el espacio de diseño utilizando variaciones paramétricas. La metodología se aplica para diseñar un microescáner que tiene aplicaciones en sistemas imagenológicos de coherencia óptica. El desempeño del microescáner sintetizado es verificado por simulaciones mediante el método de elementos finitos. Los resultados obtenidos numéricamente presentan un buen ajuste con las especificaciones de alto nivel.
    corecore